Upper Bounds for Betti Numbers of Multigraded Modules

نویسنده

  • AMANDA BEECHER
چکیده

This paper gives a sharp upper bound for the Betti numbers of a finitely generated multigraded R-module, where R = k[x1, . . . , xm] is the polynomial ring over a field k in m variables. The bound is given in terms of the rank and the first two Betti numbers of the module. An example is given which achieves these bounds simultaneously in each homological degree. Using Alexander duality, a bound is established for the total multigraded Bass numbers of a finite multigraded module in terms of the first two total multigraded Bass numbers. Introduction Let R = k[x1, . . . , xm] be the polynomial ring over a field k in m variables with the standard Z grading and L a finite Z (multigraded) R-module. Much work has been done on establishing lower bounds for Betti numbers of L, initially motivated by the Buchsbaum-Eisenbud-Horrocks conjecture for finite modules over regular local rings. This conjecture was shown to hold for R/I when I is a monomial ideal by Evans and Griffith [3] and generally for all multigraded modules by Charalambous [1] and Santoni [6]. On the other hand, little is known about upper bounds for the Betti numbers. The main result of this paper gives sharp upper bounds for the total Betti number of L in each homological degree in terms of the rank and the first two Betti numbers of the module L. Main Theorem. For i ≥ 2, we have

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homological description of Monomial Ideals using Mayer-Vietoris Trees

The goal of this paper is to provide homological descriptions of monomial ideals. The key concepts in these descriptions are the minimal free resolution, the Koszul homology and the multigraded Betti numbers. These three objects are strongly related, being Tor modules a simple way to describe this relation. We introduce a new tool, Mayer-Vietoris trees which provides a good way to compute the h...

متن کامل

Ju l 2 00 1 BOUNDS FOR BETTI NUMBERS

In this paper we prove parts of a conjecture of Herzog giving lower bounds on the rank of the free modules appearing in the linear strand of a graded k-th syzygy module over the polynomial ring. If in addition the module is Z n-graded we show that the conjecture holds in full generality. Furthermore, we give lower and upper bounds for the graded Betti numbers of graded ideals with a linear reso...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Betti numbers and minimal free resolutions for multi-state system reliability bounds

The paper continues work on monomial ideals in system reliability began by Giglio and Wynn [GW04] following work in discrete tube theory by Naiman and Wynn [NW92, NW97]. The key component is that of multigraded Betti numbers, and an algorithm using MayerVietoris trees by the first author [dC06] is the main tool. First a mapping must be made between the states of a multistate system and a monomi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006